291 research outputs found

    Slow Light amplification in a non-inverted gain medium

    Full text link
    We investigate the propagation of a coherent probe light pulse through a three-level atomic medium (in the Λ\Lambda--configuration) in the presence of a pump laser under the conditions for gain without inversion. When the carrier frequency of the probe pulse and the pump laser are in a Raman configuration, we show that it is possible to amplify a slow propagating pulse. We also analyze the regime in which the probe pulse is slightly detuned from resonance where we observe anomalous light propagation.Comment: 7 pages, 10 figures. To be published in Europhysics Letter

    Inhomogeneous mechanical losses in micro-oscillators with high reflectivity coating

    Full text link
    We characterize the mechanical quality factor of micro-oscillators covered by a highly reflective coating. We test an approach to the reduction of mechanical losses, that consists in limiting the size of the coated area to reduce the strain and the consequent energy loss in this highly dissipative component. Moreover, a mechanical isolation stage is incorporated in the device. The results are discussed on the basis of an analysis of homogeneous and non-homogeneous losses in the device and validated by a set of Finite-Element models. The contributions of thermoelastic dissipation and coating losses are separated and the measured quality factors are found in agreement with the calculated values, while the absence of unmodeled losses confirms that the isolation element integrated in the device efficiently uncouples the dynamics of the mirror from the support system. Also the resonant frequencies evaluated by Finite-Element models are in good agreement with the experimental data, and allow the estimation of the Young modulus of the coating. The models that we have developed and validated are important for the design of oscillating micro-mirrors with high quality factor and, consequently, low thermal noise. Such devices are useful in general for high sensitivity sensors, and in particular for experiments of quantum opto-mechanics

    Quasi 2D Bose-Einstein condensation in an optical lattice

    Full text link
    We study the phase transition of a gas of Rb atoms to quantum degeneracy in the combined potential of a harmonically confining magnetic trap and the periodic potential of an optical lattice. For high optical lattice potentials we observe a significant change in the temperature dependency of the population of the ground state of the system. The experimental results are explained by the subsequent formation of quasi 2D condensates in the single lattice sites.Comment: 7 pages (including 3 figures

    Dynamical instabilities of Bose-Einstein condensates at the band-edge in one-dimensional optical lattices

    Get PDF
    We report on experiments that demonstrate dynamical instability in a Bose-Einstein condensate at the band-edge of a one-dimensional optical lattice. The instability manifests as rapid depletion of the condensate and conversion to a thermal cloud. We consider the collisional processes that can occur in such a system, and perform numerical modeling of the experiments using both a mean-field and beyond mean-field approach. We compare our numerical results to the experimental data, and find that the Gross-Pitaevskii equation is not able to describe this experiment. Our beyond mean-field approach, known as the truncated Wigner method, allows us to make quantitative predictions for the processes of parametric growth and thermalization that are observed in the laboratory, and we find good agreement with the experimental results.Comment: v2: Added several reference

    An ultra-low dissipation micro-oscillator for quantum opto-mechanics

    Full text link
    Generating non-classical states of light by opto-mechanical coupling depends critically on the mechanical and optical properties of micro-oscillators and on the minimization of thermal noise. We present an oscillating micro-mirror with a mechanical quality factor Q = 2.6x10^6 at cryogenic temperature and a Finesse of 65000, obtained thanks to an innovative approach to the design and the control of mechanical dissipation. Already at 4 K with an input laser power of 2 mW, the radiation-pressure quantum fluctuations become the main noise source, overcoming thermal noise. This feature makes our devices particularly suitable for the production of pondero-motive squeezing.Comment: 21 pages including Supplementary Informatio

    Detection of weak stochastic force in a parametrically stabilized micro opto-mechanical system

    Full text link
    Measuring a weak force is an important task for micro-mechanical systems, both when using devices as sensitive detectors and, particularly, in experiments of quantum mechanics. The optimal strategy for resolving a weak stochastic signal force on a huge background (typically given by thermal noise) is a crucial and debated topic, and the stability of the mechanical resonance is a further, related critical issue. We introduce and analyze the parametric control of the optical spring, that allows to stabilize the resonance and provides a phase reference for the oscillator motion, yet conserving a free evolution in one quadrature of the phase space. We also study quantitatively the characteristics of our micro opto-mechanical system as detector of stochastic force for short measurement times (for quick, high resolution monitoring) as well as for the longer term observations that optimize the sensitivity. We compare a simple, naive strategy based on the evaluation of the variance of the displacement (that is a widely used technique) with an optimal Wiener-Kolmogorov data analysis. We show that, thanks to the parametric stabilization of the effective susceptibility, we can more efficiently implement Wiener filtering, and we investigate how this strategy improves the performance of our system. We finally demonstrate the possibility to resolve stochastic force variations well below 1% of the thermal noise

    Quantum theory of a polarization phase-gate in an atomic tripod configuration

    Full text link
    We present the quantum theory of a polarization phase-gate that can be realized in a sample of ultracold rubidium atoms driven into a tripod configuration. The main advantages of this scheme are in its relative simplicity and inherent symmetry. It is shown that the conditional phase shifts of order π\pi can be attained.Comment: X International Conference on Quantum Optics, Minsk, Belaru
    • …
    corecore